" DTIC.

' AD-A267
il !IIIIIIIIHIWIIMIIIIIIIHI;MIG ’

A Command Editor Tool
for NEXTSTEP

ELECTE §9 -
JUL2 81993 ¢ g oo
Sponsored by

Defense Advanced Research Projects Agency (DOD)
Defense Small Business Innovation Research Program
ARPA Order No. 5916

Issued by U.S. Army Missile Command
under Contract # DAAH01-93-C-R013

Effective Date: January 15, 1993
Expiration Date: July 15, 1993

prepared by
Patrick Dean Rusk, Minh Huynh, Greg Burd

Marble Associates, Inc.

T — 38 Edge Hill Road

ocument

[tor public xeﬁms:, que:dc;?;ftr'oved Waltham, MA 02154
tion is unlimited (617) 891-5555

DISCLAIMER: The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the U.S. Government.

. L{.r;"v\‘\‘)
o 2" 93-16743
&g 2 HHEMERRE

-

B8 7 50 ¢
3 o ¥ ‘-V;‘ {

S

Jdly 1, 1993

A Command Editor Tool for
NEXTSTEP

MARBLE ASSOCIATES, INC.

The final report prepared for DARPA under Contract #
DAAH01-93-C-R013.

Final Report

1.0

Executive Summary

Accesion For]
NTIS CRA&I wf
DYTIC 71aB ~
Unannou..ced =
Justification o

Distributior)
Avaiabiiiny Lutes
MhA-v'd]!- ';-‘::u jor
Special

Dist

A-l]

Marble Associates, Inc., is engaged in the development of customizable menus in
NEXTSTEP and the design of customizable menus in the X windowing environment.
In this document, we present the final design and implementation details of the Com-
mand Editor in NEXTSTEP. To reiterate the objectives stated in previous submissions,
we strive to do the following in building the Command Editor:

¢ retain all functionalities of the standard NEXTSTEP environment;

* add functionalities in a manner keeping with NEXTSTEP, mimicking the user
and developer interaction mechanisms of NEXTSTEP; and

* maintain interoperability among our customized objects and standard system
objects.

Our realization of the Command Editor for NEXTSTEP adheres closely to the original
design presented in Progress Report #1. As suggested in that report, newly discovered
challenges necessitate slight departures from the design. Our objective is to provide to
the user and the developer the functionality outlined in the Phase I Proposal and the
Progress Report #1. This document discusses in detail the challenges we faced, our so-
lutions, and the subsequent impact on the design and functionality of the Command Ed-
itor. We also address some adjustments to our original targeted functionalities forced
by the NEXTSTEP environment.

Though a complete discussion is presented, this document assumes that the reader is fa-
miliar with concepts and terminology presented in previous papers submitted under
Contract # DAAHO01-93-C-R013. For a listing of previous submissions, please refer to
Appendix B.

10f27

- marble
0%e®%e

Final Report for Contract # DAAH01-93-C-R013

2.0

Background

21

This section introduces terms and concepts necessary for subsequent discussions. We
present a synopsis of user and developer functionalities to recap the concepts described
in previous submissions. For a complete functional specification, please refer to The
Command Editor: A Manual for Users and Developers.

Menu Types

We have separated the menu systems deployed in the Command Editor into three
states. Each state represents a distinct stage in the life cycle of the application menu,
from its construction in Interface Builder (IB), through its initial instantiation at runt-
ime, to its modification by the end user (Figure 1).

¢ The FullMenu is the menu structure composed by the developer to contain
the complete set of commands available for end user customization.

i'’he BasicMenu is also determined by the developer and represents the initial
menu configuration visible at runtime prior to any user customization. The
BasicMenu is a subset of the FullMenu. The developer composes this menu
in IB by marking members of the FullMenu as “Default.”

¢ The CustomizedMenu is the end user modified menu. This menu is a modi-
fied BasicMenu and can contain CEMenuCells from the FullMenu not
marked “Default” by the developer.

We note that the BasicMenu and CustomizedMenu are not separate objects; rather,
the visible menu is in one of these states. When the application displays the initial
menu configuration dictated by the developer, we call the menu structure the Basic-
Menu. When the user alters the application menu, we call the menu structure the Cus-
tomizedMenu. The distinction is important when we discuss the developer’s
interactions with the Command Editor in IB and again when we describe the CECon-
troller actions on startup. Indeed, we will refer to the application menu as the *“visible
menu” regardless of its configuration (BasicMenu or CustomizedMenu) only when
the distinction is irrelevant.

The “invisible” menu, then, is the FullMenu. This structure represents the topology of
available commands configured by the developer. It is “invisible” in the sense that the
end user never directly interacts with this structure as a menu. The user can browse
through this topology using the Menu Editor, however. The FullMenu is stored in the
application NIB at the completion of developer configuration in IB. Within the Full-
Menu, certain CEMenuCells are marked *“Default” by the developer via the CEMenu-
Celllnspector.

At runtime, the application will search the user’s home directory for a profile (.applica-
tionName.ceinfo). If this file is available, the CEController loads the customization in
this file. The load process instantiates the archived menu structure. The CEController
then makes this newly instantiated, customized menu the application menu. If the cus-
tomization file is not available, the CEController constructs the BasicMenu by filter-
ing the FullMenu.

When the end user chooses the “Configure Menus™ option in the “Menu Configura-
tion” submenu, the Menu Editor appears and presents the hierarchy of CEMenuCells

A Command Editor Tool for NEXTSTEP 20127

. marble
" 0%0%¢

Final Report for Contract # DAAH01-93-C-R013

in the FullMenu. The user can then browse and select particular menu items to be add-
ed via drag and drop (DND).

FIGURE 1

Menu Types

CEBasicMenu CEFullMenu

B ftemB
B temC b —
<tj][—
B itemD D O iftemC2
ftem D2
CECustomizedMenu B HemD3
HemDa

B itemC b
B temD P g itemCi Key
PN | & ftem C2
D temD1 , CEMenuCell Instance
B temD2 MenuCell Instance

2.2

B Submenu Indicator

Non-Default or Customizable Indicator -
B Non-Defaultin CEFuliMenu, Customizable
in CEBasicMenu and CECustomizedMenu

Developer Functionality

The developer builds a customizable menu for his application by loading the Com-
mand Editor palette in IB and dragging our objects from this palette into the applica-
tion NIB and menu structure (Figure 2). He is responsible for composing the
FullMenu and BasicMenu. Additionally, the developer can incorporate TAVs (Tool
Acceptor Views) into his application by dragging the TAV object from the palette and
dropping it in any window in the application NIB. TAVs allow the end-user to load of-
ten-used menu commands into readily accessible buttons.

The developer composes the FullMenu by dragging CEMenuCells or CESubmenu-
Cells from our palette onto the application menu. This adds new menu items to the
FullMenu hierarchy. The developer configures individual items (CEMenuCells and
CESubmenuCells) using the appropriate IB Inspectors provided by our palette.

The developer specifies all of the following for each CEMenuCell through the CEMe-
nuCelllnspector: action, icon, “Default” status, state list, textual description, tool sta-

A Command Editor Tool for NEXTSTEP 3o0f 27

marble
0%0%

Final Report for Contract # DAAH01-93-C-R013

tus, and disable status. A visual indicator will distinguish “Default” items; a small
square notch denotes the exclusion of that item from the BasicMenu.

CESubmenuCells allow the developer to add and populate menu curtains. Though we
implement the CESubmenuCells as a special case of CEMenuCell, we will continue
using the term CESubmenuCell for the sake of clarity. CESubmenuCells require the
developer to specify the “Default” and “Disable” status via the CEMenuCelllnspec-
tor. We defer the discussion of CESubmenuCell implementation to Section 4.1.4. The
developer can also specify the border used in drawing a particular TAV via the CE-
TAVInspector.

FIGURE 2

Components in IB

. “Mainmenu

“ e ontrolier

The CEMenuConfigCell represents the “Menu Configuration” submenu that allows
the user to customize the application menu. Its submenu item- include “Configure
Menus,” “Save Configuration,” “Load Configuration,” and “Show/Hide Configurable
Cells.” Thus, its addition to the menu structure is required if the end-user is to browse

A Command Editor Tool for NEXTSTEP 40127

“m arb ' e Final Report for Contract # DAAH01-93-C-R013

3

the set of available commands, customize TAVs, or load and save configurations. With-
out the CEMenuConfigCell, the end-user can still Control-drag configurable cells to
reorder or delete menu items. The developer simply drags the CEMenuConfigCell
from the palette and drops it onto the application menu. Only one CEMenuConfig-
Cell should be added to an application menu. If more than one is added, all but the first
instance in the menu structure are ignored

The developer can incorporate standard, non-customizable MenuCells into the applica-
tion menu. While these menu items cannot be customized or deleted by the end user,
their position in the menu structure can be altered with the addition and deletion of cus-
tomizable menu items.

2.3 User Functionality

The goal of Marbi2’s Command Editor is to provide the functionalities described be-
low. The user can customize various menu characteristics within limits dictated by the
developer. Through the “Configure” submenu, the end user can view the set of config-
urable items in the menu structure, save or load configurations, and customize the
menu through the Menu Editor (Figure 3).

When requested at runtime, the Command Editor classes bear a visual indicator—a
small square notch left adjusted in the menu item. These items can be deleted and reor-
dered by Control-dragging them off the menu structure.

The Menu Editor allows the user to browse the FullMenu and select a customizable
item to be added to the application menu or TAV. The user can Control-drag a CEMe-
nuCell or CESubmenuCell from the browser and drop it into the desired position in
any menu curtain (Figure 4). Dropping the CEMenuCell onto a TAV forces the TAV
to display the icon associated with that CEMenuCell. Note that CESubmenuCells
cannot be dragged onto TAVs.

The end user can add submenus by Control-dragging the button from the “Additional
Submenu” portion of the Menu Editor onto the application menu (Figure 5). The title
of this submenu can be entered in the text field immediately below the button. The sub-
menu curtain added will contain an unconfigured item initially (Figure 6). The user
can then configure this new menu curtain via DND.

CKEs allow the user to type Command-Key to activate a menu selection without using
the mouse. To specify the CKE of any configurable menu item, the user enters the new
character in the “Command Key Equivalent” field of the Menu Editor. The CKE will
update for items currently displayed in the application menu.

The user can configure a TAV by dragging a command from the Menu Editor (Figure
7) or visible menu and dropping that command on the desired TAV. This command
must have its hasTool field enabled, indicating a valid image in its icon field.

As a final note, we do not allow the user to add menu items to the “Menu Configura-
tion” submenu. The user cannot delete items from this menu curtain nor can he specify
CKEs. Indeed, the Menu Editor displays the “Menu Configuration” item in “grayed
out” fashion, precluding user interaction with this item.

A Command Editor Tool for NEXTSTEP 5 of 27

L]

.

* marble
0%0%e

Final Report for Contract # PAAH01-93-C-R013

FIGURE 3

The Menu Editor

Menu Editor

3

-of anything

v This is on}
M

scription ———

: Item A doe

n’t do much

Y an example. .

Visual indicator of customizable menu

item from oux CE classes.

Command Keys

Drag into the application menu structure to

add gtled submenu .

Displays icon for selected command.

Type hexe to set title of submenu.

"App Menu” o

User can disable CKEs

Editeble CKE for selected command ——1

Selected command, Control-drag onto

— Textual description of selected command

1 TAVs in "My Window."

for & selected command

A Command Editor Tool for NEXTSTEP

6 of 27

“m arb | e Final Report for Contract # DAAH01-93-C-R013

FIGURE 4 Menu ltem Addition

My Wirnluw

A Command Editor Tool for NEXTSTEP 7 of 27

. # - .
m arb | e Final Report for Contract # DAAH01-93-C-R013

0%0%e
FIGURE 5 Submenu Addition
App Menn
- ,Addmon,alswmr{p.q e i 'p;mn‘u Keys -
UserTime . . rf CommanoKeyEquiv:[
i p4
FIGURE 6

Resulting Submenu

» Menu Corfiguration I
info.. o

v User Title

temC

A Command Editor Tool for NEXTSTEP 8 of 27

. Final Report for Contract # DAAH01-93-C-R01
marble po ; C-RO13

FIGURE 7 Configuration of a TAV

Menu Description
{This is the Frog item.

~— Adly onalSubmenu e Command Keys ——
: . rl - Command Key Equivr

s . Enabie Command Key

3.0 Architectural Overview

The components and functionalities of the Command Editor can be classified into two
categories: those necessary for IB and paletting and those necessary at runtime.

3.1 IB and Paletting Components

Palette objects include the CEController, CEMenuCell, CESubmenuCell, CEMenu-
ConfigCell, and the TAV. Each class conforms to protocols required of the paletting
mechanism, associating itself with the correct IB Inspector.

IB Inspectors allow the developer to configure the palette objects. Specifically, the CE-
MenuCelllnspector allows specification of CEMenuCell fields discussed in Section
2.2. The CEMenuCelllnspector also allows the specification of “Default” and “Dis-
able” status for CESubmenucCells, which are implemented as CEMenuCells. Similar-
ly, the CETAVInspector allows the specification of the TAV’s border.

While the CEController is the central control module at runtime, its duties are limited
within IB. The CEController comes into play when IB saves the developer’s applica- |
tion, at which time it composes a translation table to be used at runtime and archives
this table to the resulting NIB. We defer the full discussion of this table to Section 5.2.

A Command Editor Tool for NEXTSTEP 90of 27

marble
0%0%e

Final Report for Contract # DAAH01-93-C-R013

3.2

The FullMenu stores the hierarchical structure of the application menu and the infor-
mation relevant to each menu item. The reader may recall that our original design
called for the building of a data structure by the CEController that represents this in-
formation. Based upon further analysis, we have removed this role of the CEControl-
ler; we extract the information from the FullMenu at runtime.

Runtime Components

This section introduces the major Command Editor components present in the applica-
tion at runtime. To clarify each component’s role, we provide a brief description of the
component’s duties. We omit certain steps for brevity and defer the complete discus-
sion to Section 4.2.

At runtime, the application NIB is unarchived by NEXTSTEP’s Application object.
The Command Editor objects that archived themselves as part of the app.ication NIB
are reconstituted: the CEController and its translation table, the FullMenu, the Menu
Editor, and the TA" s dropped onto the application NIB. The CEController is respon-
sible for initializing all Command Editor objects and constructing the application
menu.

The CEController initializes the FuliMenu by replacing all instances of Menn and
Matrix in that structure with CEMenu and CEMenuMatrix, which contain DND log-
ic. Though the user will never interact with FullMenu directly, thus requiring DND in
that structure, this replacement facilitates the subsequent task of building the applica-
tion menu. Building the visible menu involves copying the structure of the FullMenu,
and the replacement of Menu and Matrix with CEMenu and CEMenuMatrix saves
the CEController from performing the same task in the newly construc‘~d menu.

On startup, the application’s menu should be replaced by either the user’s customized
menu or the BasicMenu. In the absence of a user profile (.applicationName ceinfo),
the CEController constructs the BasicMenu by replicating a subset of the FullMenu.
This replication is the filtration by which menu items not marked “Default” are re-
moved from the BasicMenu.

In the presence of a user profile, the CEController loads the visible menu directly
from the file, which is an actual archive of a user modified menu. Each CEMenuCell
then uses a translation table maintained by the CEController to assign its individual
target action. This concept will be discussed in detail in Section 5.2.

The Menu Editor displays the FullMenu and allows the user to customize the applica-
tion menu. The Menu Editor window appears when the user selects “Configure
Menus” from the “Menu Configuration” submenu.

The user customizations are stored in the visible menu itself. The user can save this
configuration through the “Save Configuration” item. The menu structure simply ar-
chives itself to disk, writing out translation table information in the process. This trans-
lation table information allows the CEMenuCells to reestablish their connection
information.

The TAVs are wnarchived by NEXTSTEP at runtime as views in the application NIB.
Subclassed to handle DND directly, the TAVs need no initialization from the CECon-
troller. In the presence of a user profile, however, the TAVs require the CEController
to reestablish connection information. Conversely, when the user saves his customiza-

A Command Editor Tool for NEXTSTEP 10 of 27

: X Final Report for Contract # DAAH01-93-C-R013
marble P

tions, the CECortroller archives the TAV configuration along with the visible menu
archive.

4.0 Implementation

4.1 Implement=tion of Developer Functionalities

This section covers the implementation of classes necessary to provide the developer’s
suite of functionality described in Section 2.2. We also discuss the implementation of
components that assume special roles in 1B to provide certain user functionalitics. For
an introduction to constructing an IB Palette, please refer to the NEXTSTEP on-lire
document Building a Custom Palette.

4.1.1 CommandEditor Class

The CommandEditor class. a subclass of IBPalette, is the module responsible for inte-
grating our Command Editor classes into IB. The instance data of this class include the
palette object types and their iconic representations in the palette window. This class
implements a single method, finishInstantiate, which initializes all Command Editor
palett= objects for IB.

The Command Editor palette provides the following classes to the developer: CECon-
troller, CEMenuCells, CESubmenuCell’, CEMenuConfigCell, and TAV (Figure 2).
The subsequent sections detail the role and implementation of each cluss relevant to its
operation in IB.

4.1.2 CEController

The CEController is responsible for creating and archiving the translation tables at
the completion of development in IB. Specifically, it traverses (1) the FullMenu to
compose the cellTable and (2) the application’s object list to compose the tavTable.
Both tables are used at runtime to reestablish connection information (Section 5.2).
The methods writeCellTable and writeTAVTable build their respective tables and ar-
chive them to the application NIB. Both methods are invoked in the CEController’s
write method, which is automatically executed when the developer selects “Save” in
IB. The developer must drag a single instance of the CEController from our palette
into his application NIB.

4.1.3 CEMenuCell

The CEMenuCell is subclassed from MenuCell and adds several instance variables to
allov: the targeted end user functionalities. In IB, the CEMenuCell associates its CE-
MenuCelllnspector (Figure 8) through the getInspectorClassName method. The CE-
MenuCell also implements all methods required of the CEMenuCellnspector to set
instance data on developer input. Specifically, the CEMenuCell can draw its visual in-

1.CESubmenuCell is a special case of the CEMenuCell class and is not a distinct class in itself (Se- on 4.1.4)

A Command Editor Too!l for NEXTSTEP 11 0of 27

marble
0%e®%e

Final Report for Contract # DAAH01-93-C-R013

dicator if “Default” is set to false, update its title when its root state changes, store its
tool icon, set its “hasTool” field, and enable/disable its CKE field.

The instance data of the CEMenuCell class map to particular functionalities in the fol-
lowing manner.

¢ States—Each CEMenuCell can have multiple states, and each state repre-
sents a different title to be displayed once the menu item is selected by the
end user. States are stored in a simple list, with one state marked as the root
state to be displayed initially. We provide methods that allow the developer to
integrate his application logic with this state list. The application is responsi-
ble for changing the menu item’s state. The CEMenuCell automatically up-
dates its title in IB when the developer edits the root state title. Conversely,
the root state title in the CEMenuCellInspector updates should the developer
edit the CEMenuCell directly.

* Action—Each CEMenuCell performs a specific action when selected by the
end user. The mechanism for establishing a target connection is the standard
IB method of Control-dragging from the menu item to the target object.

» Textual Description—The developer can provide a description of the menu
item by typing directly in the “Menu Description” field in the CEMenuCel-
lnspector. This description is available to the user in the Menu Editor.

* Icon—The developer can load an image as the icon for a particular CEMenu-
Cell. This icon is used to represent the menu item in a TAV,

¢ Has Tool—Wh:n true, this boolean field indicates that the CEMenuCell has
an icon and can be dropped into a TAV at runtime.

» Disabled—CEMenuCells configured as “Disabled” will disallow the end us-
er’s selection of that item at runtime. If “Disabled” is set to true for an item,
the menu structure displays that item in “grayed out” fashion.

* Default Status—CEMenuCells configured as “Defauit” are members of the
BasicMenu and are included in the visible menu loaded at runtime in the ab-
sence of a user customization profile. The user can delete CEMenuCells
from the visible menu; any item the developer considers permanent to the ap-
plication menu should be integrated as a regular NEXTSTEP MenuCell in-
stance.

4.1.4 CESubmenuCell

The CESubmenuCell is actually implemented as a CEMenuCell whose target is a
CEMenu (Figure 9). Such CEMenuCells answer true to hasSubmenu and draw them-
selves with an additional, right-adjusted submenu arrow. When the dcveloper drops a
CESubmenuCell onto the application menu in IB, the structure being added consists
of the top level CEMenuCell, a CEMenu that is the target of the toplevel CEMenu-
Cell, and another CEMenuCell contained in that CEMenu. The CESubmenuCell as-
sociates its inspector, the CEMenuCelllnspector, with the getInspectorClassName
method. The instance fields of meaning for a CESubmenuCell are “Default” and “Dis-
able.” The “Default™ status includes the submenu in the BasicMenu. The “Disable”
status precludes user selection of that CESubmenuCell.

A Command Editor Tool for NEXTSTEP 12 of 27

marble
0%0%0

Final Report for Contract # DAAH01-93-C-R013

FIGURE 8

The CEMenuCellinspector

FIGURE 9

The Anatomy of a CESubmenuCell

Upper Menu Curtain

Lower Menu Curtain

CESubmenuCell b

CEMenuCell

: CEMenuCell

Bl cemMenuCenl

CEMenu

4.1.5 “Menu Configuration” Submenu

We implement the “Menu Configuration” submenu as a stub object. The developer can
drag the item from the Command Editor palette onto the application menu. The entity
added, however, is simply an instance of CEMenuConfigCell. CEMenuConfigCell is
a subclass of CEMenuCell that adds no data or methods (class or instance). In this
sense, the CEMenuConfigCell class is functionally equivalent to the CEMenuCell
class. The dropped cell is used as an attach point for the “Menu Configuration” sub-
menu at runtime. In the construction of the BasicMenu, the CEController searches
for a cell of class CEMenuConfigCell and attaches the “Menu Configuration” sub-

A Command Editor Tool for NEXTSTEP 1301 27

marble
0%e%e

Final Report for Contract # DAAH01-93-C-R013

4.1.6

4.2

4.21

menu to this cell. The developer should add only one instance of CEMenuConfigCell
to the application menu, and he will not be able to view the “Menu Configuration” sub-
menu in IB.

TAV

Tool Acceptor Views are instances of the CEToolView class. CEToolView is a sub-
class of CEIconView, which is itself a subclass of View. The TAV class inherits the
ability to display an image and respond to input from the View class. The CElcon-
View class, in turn, adds the ability to set the image from a file and display the image
in a “ghosted” style. Finally, the TAV contains DND logic and can set its instance data
given a CEMenuCell. Specifically, the TAV displays the icon associated with a CE-
MenuCell and, on user selection at runtime, sends a message to the CEMenuCell’s
target object with the appropriate selector.

The TAV associates its inspector, the CETAVInspector, with the getInspectorClass-
Name method. The developer uses the inspector to specify the border style of the se-
lected TAV.

Implementation of User Functionalities

CEController and the Startup Sequence

The CEController is responsible for all initialization and configuration of the menus
and TAVs on startup. Additionally, the CEController processes many user customiza-
tions committed in the Menu Editor.

On startup, the CEController executes the following sequence.

1. The CEController loads the translation tables (cellTable and tavTable) containing
keys or unique identifiers (UIDs) for the menu and TAVs.

2. The CEController traverses the hierarchical FullMenu, replacing instances of
Menu and Matrix with instances of CEMenu and CEMenuMatrix. The replaced
objects are placed on a list for deallocation later.

3. The CEController traverses the FullMenu once again, loading UIDs into the ap-
propriate CEMenuCells. This pass also dictates that the CEController create man-
agement tables for each MenuCell instance (Section 5.2).

4. The CEController then initializes the “Menu Configuration” submenu and loads
its four UIDs into the cellTable (“Configure Menus,” “Save Configuration,” “Load
Configuration,” and “Show/Hide Configurable Cells™).

5. The CEController builds the visible menu. This process takes one of two paths.

5a. If the user’s profile (.applicationName.ceinfo) does not exist in his home di-
rectory, we construct and present the BasicMenu. To do this, the CEControl-
ler replicates the FullMenu with a recursive method called deepCopy
(Section 5.6). The CEController then removes items not marked “Default”
from the new copy of the FullMenu with filterMenuStructure. The copy is
installed as the application menu. We do this filtration once only, and the Ba-
sicMenu is archived to the application NIB to avoid redundant work in subse-
quent invocations of the application.

A Command Editor Tool for NEXTSTEP 14 0f 27

marble
0%0%e

Final Report for Contract # DAAH01-93-C-R013

422

5b. If the user’s profile exists, the CEController reads the visible menu and TAV
configuration from this archive. As part of this load procedure, each CEMe-
nuCell restores its connection information using the cellTable in the CECon-
troller. Similarly, the CEController uses its tavTable to restore connection
information for each TAV.

6. The CEController attaches the “Menu Configuration” submenu to the newly con-
structed menu. It then makes this the visible menu with

[NXApp setMainMenu: visibleMenu]).

7. Ttems on the list composed in Step 2 are deallocated. The necessity for this delayed
action is discussed in Section 5.3.

When the user selects “Load Configuration” from the “Menu Configuration” submenu
and enters a valid file name in the subsequent dialog box, the CEController loads the
file, effectively executing step Sb. The existing visible menu is deallocated and the
newly loaded menu is set with

[NXApp setMainMenu: newMenu].

There is no need to attach the “Menu Configuration” submenu; the archived menu
structure already contains this submenu. Conversely, the CEController archives the
menu structure and TAV configuration to disk when the user selects “Save Configura-
tion.”

The next section describes the CEController responsibilities necessitated by the
Menu Editor.

Menu Editor

The Menu Editor is a window that resides in the CEController NIB and is brought
forth by the CEController when the user selects “Configure Menus” from the “Menu
Configuration” submenu. The Menu Editor contains several components that allow
the user to browse the set of available commands, specify CKEs, and add items to the
application menu.

The CEBrowserMatrix, which displays the set of available commands, is a subclass
of BrowserMatrix. We add DND logic to provide the capability to drag a cell from the
browser onto a menu curtain. Each item displayed in the browser is a CEBrowserCell.
This cell contains a reference to the equivalent cell in the FullMenu (Figure 10).
When the CEBrowserMatrix detects a drag, the selected CEBrowserCell is told to
write itself to a private pasteboard. The CEBrowserCell instructs its FullMenu equiva-
lent cell to write its data to this pasteboard, including its UID. On the subsequent drop,
the receiving CEMenu reads the cell information from the pasteboard. The UID is
then used to access the original FullMenu member. This member contains a valid con-
nection to its target. This connection information is replicated for the newly read cell
(Section 5.2). The same logic allows the user to drag a CEMenuCell onto a TAV.

The “Additional Submenu” portion of the Menu Editor contains an instance of the
CEAdditionalSubmenuView class. This subclass of Button implements additional
methods for DND. It also allows the specification of its title, and the user can do so by
typing in the text field in the “Additional Submenu” portion of the Menu Editor. The
CEAdditionalSubmenuView draws itself with the submenu arrow and contains refer-
ences to its target CEMenu curtain and a single CEMenuCell item in that curtain.

A Command Editor Tool for NEXTSTEP 15 of 27

marble
0%e%e

Final Report for Contract # DAAH01-93-C-R013

When dragged, the CEAdditionalSubmenuView writes itself to the Pasteboard, in-
cluding its referenced instances of CEMenu and CEMenuCell. On the subsequent
drop, the receiving CEMenuMatrix curtain reads the entire structure from the Paste-
board and integrates the new submenu containing a single item into the menu structure.

The customization of CKEs requires intervention by the CEController (Figure 11).
When the user enters a letter in the “Command Equivalent Key” field of the Menu Edi-
tor, the CEController follows a reference contained in the selected CEBrowserCell.
This reference points to a member of the FullMenu—a CEMenuCell. The CECon-
troller then uses the UID of this CEMenuCell to collect members of the visible menu
that are equivalent to this CEMenuCell. The CEController configures these instances
to activate on the new CKE. If no such instances are found, the CEController ignores
the new CKE. The entry in the FullMenu is not modified; the next selection of the
same command will reflect the CKE originally set by the developer. The customization
of the “Enable/Disable CKE” field is analogous.

FIGURE 10

The Association Between CEBrowserCells and CEMenuCelis
CEFuliMenu

TN
HilemA D femAt
item B i tem A2
ttem tem Ct Key=13 f‘
0 HtemD b O femC2
ftem D1
CEBrowserCell whose
reference points to ttem D2
8 ftemD3
o hemD4

Menu Configuration item omitted from
CEFuliMenu diagram.

valid connection

O

Target Object

A Command Editor Tool for NEXTSTEP 16 of 27

) m a rb | e Final Report for Contract # DAAH01-93-C-R013
0%0%
FIGURE 11 References for CKE Updates

When the user modifies the CKE foritem Ct in menu3
through the Menu Editor, the CEController obtains the Key
of the target menu item via the selected CEBrowserCell. This
key Is then used to access copies ofitem C1 in menui and

menu4.

menui

Visible Menu

em C Key=s D

CEFuliMenu

C. temAj Keys2
Mem A2 Key=3

A Koy >

ltem B Key=4

ftem C Keys=S ® em C1 Key=6

B HtemD Key=8 b B HemC2 Key=7

HemD1 Key=9

ltem D2 Key=10

itemD Keys8 P

tem C1 Key=6

menu2 B ltemD3 Key=11
" llemDa Keye12
menu3
Menu Editor
ltem C1 Key=6
ltem C2 Key=7 Z | tem C1
menu4d
tem D1 Key=3
CKE

em D2 Key=10

fem C1 Key-6 CEBrowse:Cell
. flemD4 Kay=12

4.2.3 DND in Menus

The provision of DND logic in the application menu entails replacement of instances
of Menu and Matrix with instances of CEMenu and CEMenuMatrix. On a Control-
drag, the CEMenuMatrix will detect the drag and map the mouse coordinates to one
of its members—a CEMenuCell. This cell implements read and write methods that
allow it to initialize itself from the pasteboard and format itself to the pasteboard, re-
spectively. The read restores the CEMenuCell’s target action using the cellTable.

The CEMenu, then, is used to manage instances of MenuCell. The MenuCell class
cannot read or write without losing its connection information (Section 5.2). The CE-
Menu maintains a table of (UID, MenuCell reference] pairs that facilitates the restora-
tion of each MenuCell’s target action.

A Command Editor Tool for NEXTSTEP 1701 27

marble
0%0%

Final Report for Contract # DAAH01-93-C-R013

424

5.0

DND in TAVs

We implement TAVs as a subclass of View. On a simple mouseDown, a TAV sends its
target object the appropriate selector. A TAV stores its target and selector information
in a CEMenuCell instance datum. On a Control-drag, a TAV writes its CEMenuCell
to the Pasteboard and invalidates its CEMenuCell instance datum. The visual indica-
tor is the “ghosted” icon on the TAYV itself. On a drop, the receiving TAV reads the CE-
MenuCell from the Pasteboard and assigns its CEMenuCell reference to this newly
allocated cell.

Challenges and Resolution

5.1

5.2

The challenges we faced in completing the Command Editor stem from two aspects of
the NEXTSTEP environment. The first aspect is the process by which NEXTSTEP ar-
chives an application package (executable and NIBs) and the subsequent unarchival
(reconstitution) of the application’s objects at runtime. The second aspect is NEXT’s
private API that hides some functionalities of IB from the developer.

MenuTemplate

The NEXTSTEP implementation of menus is hidden from the developer in IB. IB de-
ploys a “MenuTemplate” hidden in an API private to NEXT to implement the menu
structure. Consequently, our original design could not be implemented. The reader
may recall that DND was to be achieved by replacing the Matrix instances of the menu
with instances of our CEMenuMatrix in IB. While we indeed perform this replace-
ment, this action is done to the FullMenu on startup. As a result, we now construct the
visible menu from the FullMenu, filtering out non-“Default” members of the hierar-
chy.

Restoring Connection Information

The standard NEXTSTEP API provides the write method for the archival of objects.
This write method formats data to a stream and can be used to archive an object to
disk. Data written include instance variables and methods. If the object contains refer-
ences to other objects, however, these references are not written and read correctly un-
less the referenced objects are likewise written to the same stream. The write method
actually writes out a preset value for all references to external objects. The read sets
the reference to NULL when it encounters the preset value, effectively destroying the
connection information.

In a typical application developed in IB, connection information is archived in the NIB
that encapsulate the objects involved in that connection. This archival method is pri-
vate to NEXT and presumably does much more than the write method. At runtime,
NEXTSTEP unarchives the NIBs and establishes the connection information correctly.

Our challenge stems from the need to retain the connection information in an object de-
spite using the write method. Specifically, we require the write mechanism to enable
DND; an object with external references (a CEMenuCell with a target object) is writ-
ten to (and read from) a private pasteboard for each DND session. The same mecha-

A Command Editor Tool for NEXTSTEP 180f 27

marble
0%0%

Final Report for Contract # DAAH01-93-C-R013

nism saves the end user’s customizations of the application menu when the customized
menu recursively writes itself to disk.

Each CEMenuCell has a target object to which it will send a selector when activated
by the end user. The developer specifies this connection in IB by Control-dragging an
IB wire from the CEMenuCell to its target object. At the completion of development
in IB, the FullMenu structure archives to the application NIB. The structure of this
FullMenu is fixed by the developer and remains constant throughout invocations of
the application. At runtime, NEXTSTEP reconstitutes the FullMenu with valid con-
nections and targets. Hence, all the CEMenuCells, their target objects, and connection
information exist and are valid at runtime.

If we ask a CEMenuCell to write itself, we essentially lose the reference to its target
object. To facilitate DND and profiling of the end user’s customization, we implement
a translation table that pairs each CEMenuCell in the FullMenu with a unique key
(UID). At the completion of development in IB, the CEController traverses the appli-
cation’s object list and inserts [UID, CEMenuCell reference] pairs for every CEMe-
nuCell instance into a translation table. The CEController then archives this table in
the application NIB. At runtime, the table is instantiated and its object references point
to items in the instantiated FullMenu. Each CEMenuCell instance in the FullMenu
uses the table to assign its UID to an internal variable for future use.

When a drag occurs at runtime, the dragged CEMenuCell writes itself to the drag
pasteboard. On the drop, the CEMenuCell is read from this pasteboard, complete with
a UID. The CEController uses the UID to look up the object reference in the transla-
tion table. This object reference yields the original CEMenuCell in the FullMenu.
Given this original CEMenuCell, which contains the valid reference to its target ob-
ject, the target connection can be restored.

Similarly, when the end user saves his profile, the customized menu recursively writes
itself to disk. The unique key is written for each CEMenuCell. On a subsequent run of
the application, the CEController loads this archive. Since this a complete archive of
an object, the target actions do not need restoration.

We treat TAVs in a similar manner. At the completion of development in IB, the CE-
Controller obtains the list of all objects and traverses it looking for objects of class
TAV. The CEController composes a second table to store [tavUID, CEMenuCell
copy] tuples.

Instances of MenuCell further complicate the connection restoration. Recall that one
of our original design objectives was to retain the full functionality of NEXTSTEP, par-
ticularly IB. We allow the developer to use the default IB MenuCell to compose the ap-
plication menu. The end user can drag a submenu from the Menu Editor (onto the
application menu) that contains MenuCell instances. The connection for the MenuCell
is lost when the submenu recursively writes itself to the pasteboard. A key is used in
this case to restore the connection, much like for CEMenuCells. The difficulty is now
associating the key with the MenuCell to be written. The MenuCell is a NEXTSTEP
“appkit” class. The UID, then, is stored in the CEMenu which contains that Menu-
Cell. Each CEMenu in the application menu structure must manage a set of Menu-
Cells (and SubmenuCells). For each MenuCell, the CEMenu will maintain the unique
key that refers to the original MenuCell in the FullMenu.

A Command Editor Tool for NEXTSTEP 19 of 27

N

marble
0%e%

Final Report for Contract # DAAH01-93-C-R013

5.3

5.4

Submenus are a special case for archival and restoration. When a submenu item writes
itself, the entire recursive structure is written to the stream. This includes the submenu
curtain as well as the menu items that curtain contains. Though the targets of the menu
items are lost via the standard write, the target of the submenu item is the submenu
curtain, which is written to the archive along with the upper level submenu item. No
unique key is needed to reestablish the connection. When a submenu item is read, the
target object is set to the submenu curtain (CEMenu) automatically. As curtain items
are read back, we use unique keys to restore their individual connections.

Race Conditions

A peculiar race condition occurs in the process by which NEXTSTEP instantiates an
application’s NIB at runtime. Typically, an object receives an awakeFromNib mes-
sage once it is instantiated by NEXTSTEP. This message signifies that all objects in
that NIB are instantiated and valid. The developer can implement this method to per-
form any initialization or synchronization desired. In a NIB that consists of many ob-
jects, the order in which objects receive the awakeFromNib message is not known.
Therefore, any dependency in an object’s awakeFromNib method on another object
having received the awakeFromNib message is prone to error.

This aspect of the instantiation process gives rise to a race condition that the CECon-
troller must address. When the CEController receives its awakeFromNib, it pro-
ceeds to replace recursively the FullMenu's Menu and Matrix instances with
instances of CEMenu and CEMenuMatrix. Replacement entails freeing the replaced
Menu and Matrix instances. While the Menu and Matrix instances certainly exist,
many of them have yet to receive their awakeFromNib message. If we free these in-
stances before the awakeFromNib, the unarchival process will eventually send mes-
sages to non-existent objects, causing the application to crash.

The work around for this race condition entails placement of the objects to be freed on
a list and, finally, freeing of this list once the awakeFromNib is sent to each object.
We accomplish the delayed freeing of objects by placing the action on the applica-
tion’s event queue, with the guarantee that this event queue entry will be processed
only after the current event is finished. The current event is the unarchival of the NIB.
Hence, we free the replaced Menu and Matrix instances only after the unarchival pro-
cess is completely finished.

Submenu Addition

The addition of submenus to the application menu by the end user at runtime dictates
that we implement a method by which a DND submenu structure is added to a menu
curtain. Recall that the end user can add submenus in one of two ways: by dragging
the “Additional Submenu” item from the Menu Editor onto the application menu or
by dragging a menu item that represents a submenu from the CEBrowserMatrix in
the Menu Editor.

When the “Additional Submenu” item is dragged from the Menu Editor, a submenu
structure consisting of one item is written to the drag pasteboard. The structure written
includes the upper item, its submenu curtain, and the singular lower member item. The
submenu curtain is the target object of the upper menu item. On the subsequent drop,
the drop-curtain’s CEMenuMatrix allocates a new CEMenuCell which reads itself

A Command Editor Tool for NEXTSTEP 20 of 27

marble
0%0%e

Final Report for Contract # DAAH01-93-C-R013

5.5

5.6

from the drag pasteboard. This read process restores the connection information; the
submenu curtain is once again the target object of the upper menu item. The CEMenu-
Matrix integrates the new submenu item into its list of items.

When a menu item representing a submenu is dragged from the browser area of the
Menu Editor, the process by which the new submenu gets incorporated into the exist-
ing menu is identical to that of the previous case. In this scenario, however, the items
in the submenu curtains have connections that must be restored. Each CEMenuCell
can restore its own connection information with data written on the write with its read
method. Hence, the process by which the new submenu item is created and initialized
from the pasteboard also restores the member items’ connections.

Populating the Matrix

Populating a matrix poses a special problem for our development effort. To add a cell
to a Matrix, The NEXTSTEP interface to its “appkit” Matrix class dictates that we first
ask the Matrix to create a new cell. Second, we assign instance variables of that cell ex-
plicitly. The problems with this mechanism are (1) the cell is always added at the end
of the list (bottom of menu curtain) and (2) we must copy a record structure to assign
cell instance data. We need the capability to insert a pre-allocated cell into the Matrix
at any position.

To this end, we have implemented a method which inserts a cell in the Matrix without
copying the structural data explicitly. The method accomplishes this by pointer manip-
ulation. First, the Matrix is asked to allocate a new cell. We then obtain the pointer to
this cell, reset the pointer to our cell, and free the newly allocated cell. We have just
avoided the explicit copy, but our cell is not at the desired location. Next, we traverse
the Matrix’s list of pointers and insert our cell in the correct location by shifting the ap-
propriate pointers.

Deep Copy

The duplication of an existing recursive data structure requires the recreation of each
member node. While an object that contains references to additional objects can cer-
tainly duplicate itself via the copy method, the new copy contains references to the
same instances pointed to by the original object, as the following NEXTSTEP on-line
documentation clearly shows.

copy
- copy
Returns a new instance that's an exact copy of the receiver. This
method creates only one new object. If the receiver has instance vari-
ables that point to other objects, the instance variables in the copy

will point to the same objects. The values of the instance variables
are copied, but the objects they point to are not.

Our duplication of a subset of the FullMenu to provide the application menu at run-
time dictates that we duplicate each member menu cell. If we were to employ the stan-
dard copy mechanism, the new menu will contain references to the original menu cells
in the FullMenu. When the end user customizes the menu, modifications made to the
newly created menu will alter the configuration of the FullMenu.The original hierar-

A Command Editor Tool for NEXTSTEP 21 of 27

marble
0%e%e

Final Report for Contract # DAAH01-93-C-R013

6.0

chy and instance data provided by the developer will be lost. We cannot allow this to
happen. This is the motivation for the deepCopy method, which recursively recreates
each node in a given menu structure and replicates all referenced objects.

Compromises to Functionalities

6.1

6.2

States with Individual Targets

Our original design allowed each state of a CEMenuCell to have a distinct target ac-
tion. We assumed that a mechanism exists in IB that would allow the developer to es-
tablish the connection from the individual state to its target object. This is typically
done through the Control-drag mechanism that displays an IB wire. Unfortunately, the
IB connection establishment mechanism is private to IB. All states will represent the
same action.

System Menus

The “Windows” and “Services” menus are maintained by the system. As such, their
items are determined dynamically over the course of the system’s execution. We can-
not add DND to these system menus; doing so will potentially cause a plethora of er-
rors that affect components external to the application.

A Command Editor Tool for NEXTSTEP 22 of 27

marble
0%e®%e

Final Report for Contract # DAAH01-93-C-R013

Appendix A

Class Descriptions

This section lists the classes of the Command Editor: those used by the developer as
and those necessary to construct the Command Editor itself. Each entry contains the
class and category name, its superclass if applicable, the file that contains the imple-
mentation, and a brief description of its purpose and use.

className(category): superClass in fileName
description

Fields that are inapplicable for an entry are denoted with a *“-”. Categories group meth-
ods by common purpose and separate logically distinct sets of methods. A category en-
try begins with the class name followed by the parenthesized category name. The
entries appear in alphabetical order.

Application(CEAdditions): - in Applications_CEAdditions.[mh]

This category adds one method to the standard Application class. The CEController
uses this method, setWindowsList, to obtain the list of windows in the application and
access the application menu at runtime.

CEAdditionalSubmenuView: Button in CEAdditionalSubmenuView.[mh)

This class implements the draggable submenu button in the Menu Editor’s “Addition-
al Submenu” portion. The end-user can set the title of this submenu and drag the but-
ton into the menu structure. On the drop, the new submenu contains a singic
configurable item.

CEBrowserCell: NXBrowserCell in CEBrowserCell.[mh]

CEBrowserCells are used in the Menu Editor to allow the user to browse the set of
available commands. Each CEBrowserCell contains a proxy or reference to its repre-
sentative in the FullMenu and displays the title of its proxy’s root state.

CEBrowserMatrix: CEDragMatrix in CEBrowserMatrix.[mh]

The CEBrowserMatrix inherits DND logic, allowing the end-user to drag a CE-
BrowserCell from the Menu Editor into the application menu. Most of the implemen-
tation of the DND capability is in the abstract superclass CEDragMatrix. The
CEBrowserMatrix supplies the verification methods to tailor the drag sessions. Spe-
cifically, the end-user must hold down the Control key to start a drag. In addition, the
CEBrowserMatrix does not accept drops.

CEController: Object in CEController.[mh]

This section of the CEController contains the methods necessary to execute the se-
quence detailed in Section 4.2.1. These methods handle the archival and unarchival of
the three menus (FullMenu, BasicMenu, and CustomizedMenu) and build, maintain,
and manipulate the UID translation tables (cellTable and tavTable).

CEController(IB): - in CEController_IB.m

This category of CEController contains methods to write the UID tables (cellTable
and tavTable) to the application NIB at the completion of development in IB.

CEController(UserDefaults): - in CEController_UserDefaults.m

A Command Editor Tool for NEXTSTEP 23 of 27

marble
0%e%

Final Report for Contract # DAAH01-93-C-R013

This category of CEController cstains methods to load and save the end-user’s con-
figurations. The CEController loads the CustomizedMenu and configures the TAVs
using methods in this category.

CEController(Userlnteraction): - in CEController_UserInteractions.m

Methods in this category implement the selections in the “Menu Configuration” sub-
menu. The CEController uses methods in this category to bring forth the Menu Edi-
tor and show or hide configurable cells. This category additionally handles all end-
user customizations done through the Menu Editor: specification and enabling of
CKEs, traversal of the FullMeau through the browser, selection and dragging of CE-
BrowserCells, and addition of a submenu.

CEDragMatrixView: Matrix in CEDragMatrix View.[mh])

This is the abstract superclass for CEBrowserMatrix and CEMe¢nuMatrix, both of
which require different DND capabilities. This class implements the DND methods
and leaves stub methods that a subclass must override to tailor the DND capabilities.
To facilitate the drag, the CEDragMatrixView accepts the mouseDown event, maps
the mouse coordinatas to the draggable item, obtains the drag image, obtains the drag
data, and writes that drag data to a private pasteboard. To facilitate the drop, the CE-
DragMatrixView updates the cursor on draggingEntered and draggingUpdated and
reads data from the private pasteboard on the actual drop.

CElconView: View in CElconView.[mh]

This is the abstract superclass of CEToolView (which implements TAVs). CEIcon-
View contains methods to display an image centered in a view with options for back-
ground style and ghosting.

CEMenu: Menu in CEMenu.[mh]

The CEMenu manages its MenuCells and their targets to allow the restoration of con-
nection information. In addition, the CEMenu, at the request of the CEController,
does the actual replacement of Matrix with CEMenuMatrix for itself and its sub-
menus. The CEMenu also implements methods to add and remove submenus, update
CKEs, and update enable/d sable display status of its items.

CEMenuCell: MenuCell in CEMenuCell.[mh)

An instance of CEMenuCell is the atomic datum that represents 1 command in the
menu structures. The CEMenuCell inherits basic menu item functionality from Menu-
Cell. Additional instance data record its list of states, icon, description, “hasTool” sta-
tus, “Default” status, CKE, and UID. CEMenuCell also contains methods to access,
manipulate, and update its instance data. The CEMenuCell can display itself with the
square notch to indicate either default (IB) or configurable (runtime).

CEMenuCell(/B): - in CEMenuCell_IB.m

This category contains a single method getInspectcrClassName that associates the
CEMenuCelllnspector with the CEMenuCell class. This allows the developer to con-
figure the instance data of a CEMenuCell in IB.

CEMenuConfigCell: CEMenuCell in CEMenuConfigCell.[mh)

This is a stub class used for the attachment of the “Menu Configuration™ submenu
(Section 4.1.5).

A Command Editor Tool for NEXTSTEP 24 of 27

marble
0%e%

Final Report for Contract # DAAH01-93-C-R013

CEMenuMatrix: CEDragMatrix in CEMenuMatrix.[mh]

This class allows the end-user to drag items from and drop items onto the application
menu. CEMenuMatrix overrides its superclass mc:thod validateBeginDrag to allow
the end-user to drag CEMenuCells from the appiication menu. Similarly, it overrides
its superclass method validate:andPerformDrop to allow the end-user to drop CEMe-
nuCells into the application menu.

CEState: ButtonCell in CEState.[mh]

An instance of CEState maintains a title, a numeric identification tag, and a boolean
field that reflects whether or not this instance is the root state. Such instances are
grouped into a list and stored in an instance datum of the CEMenuCell class. The de-
veloper can access a CEState by its numeric identification tag (index) and update the
menu item’s displayed title with the CEState’s title.

CEToolView: IconView in CETool View.[mh]

An instance of CEToolView contains an instance of CEMenuCell that st ‘es the CE-
ToolView’s configuration. When the user selects the CEToolView instance (TAV), the
TAV accesses its instance of CEMenuCell to obtain the target object and the selector
to send to that target object. This action effectively executes the configured command.
In addition, CEToolView contains methods to implement the DND configuration capa-
bilities.

CcToolView(IB): - in CEToolView_IB.m

This category contains a single method getInspectorClassName that associates the
CEToolViewInspector with the CEToolView class. This allows the developer to spe-
cify the border style of a CEToolView in IB.

Cell(CEAdditions): - in Cell_CEAdditions.[mh]

This category adds methods to the standard NEXTSTEP class Cell to obtain and set a
single character value. These methods facilitate the specification and updating of
CKEs.

Matrix(CEAdditions): - in Matrix_C. .dditions.[mh]
Methods in this category implement the work around described in Section 5.5.
NXImage(CEAdditions): - in NXImage_CEAdditions.[mh]

This category adds the method initFromRect to allow the initialization of a NXImage
from a region of a view. We use this capability to provide the dragging image when a
CEBrowserCell is dragged.

Object(CEAdditions): - in Object_CEAdditions.[mh]

This category contains a single method deepCopy to replicate an object as well as the
objects it references (Section 5.6).

A Command Editor Tool for NEXTSTEP 25 of 27

marble
0%e%

Final Report for Contract # DAAH01-93-C-R013

Appendix B

Related Documents

A Command Editor Tool for NEXTSTEP and X-Windows Systems (SBIR Phase 1 Pro-
posal) for DARPA/OASB/SBIR, Submitted on July 1, 1992.

A Command Editor Tool for NEXTSTEP and X, Quarterly Status Report under Con-
tract # DAAHO01-93-C-R013, Submitted on April 26, 1993.

A Command Editor Tool for X and Motif, Design Document under Contract #
DAAHO01-93-C-RO013, July 1, 1993,

The Command Editor: A Manual for Users and Developers, under Contract #
DAAHO01-93-C-R013, July 1, 1993.

End-user Customizable Menus in the X Windowing Environment (SBIR Phase II Pro-
posal) for Contract # DAAH01-93-C-R013, July 1, 1993,

A Command Editor Tool for NEXTSTEP 26 of 27

" marble
0%e®%e

Final Report for Contract # DAAH01-93-C-R013

Appendix C

Sources

Building a Custom Palette

Interface Builder
IB (protocol)

IBConnectors

IBDocuments

IBDocumentControllers

IBEditors

IBinspectors

IBObject
IBSelectionOwners
Matrix

Menu
MenuCell

NXBrowser
NXBrowserCell

NXDraggingDestination

NXDragginglnfo

NXDraggingSource

/NextLibrary/Documentation/NextDev/Dev-
Tools/18_CustomPalette

INextDeveloper/Demos/Header Viewer.app

/NextLibrary/Documentation/GeneralRef/
08_InterfaceBuilder/Protocols/IB.rtf

/NextLibrary/Documentation/GeneralRef/

08_InterfaceBuilder/Protocols/IBConnec-
tors.rtf

/NextLibrary/Documentation/GeneralRef/
08_InterfaceBuilder/Protocols/IBDocum-
nets.rtf
/NextLibrary/Documentation/GeneralRef/
08_InterfaceBuilder/Protocols/IBDocu-
ments.rtf

/NextLibrary/Documentation/GeneralRef/
08_InterfaceBuilder/Protocols/IBEditors.rtf

/NextLibrary/Documentation/GeneralRef/
08_InterfaceBuilder/Protocols/IBInspec-
tors.rtf

/NextLibrary/Documentation/GeneralRef/
08_InterfaceBuilder/Protocols/IBObject.rtf

/NextLibrary/Documentation/GeneralRef/
08_InterfaceBuilder/Protocols/1BSelection-
Owners.rtf

/NextDeveloper/Headers/AppKit/Matrix.h
/NextDeveloper/Headers/AppKit/Menu.h
/NextDeveloper/Headers/AppKit/Menu-
Cell.h

/NextLibrary/Documentation/GeneralRef/
02_AppKit/Classes’NXBrowser.rtf

/NextLibrary/Documentation/GeneralRef/
02_AppKit/Classes’/NXBrowserCell.rtf
/NextLibrary/Documentation/GeneralRef/

02_AppKit/Protocols’/NXDraggingDestina-
tion.rtf

/NextLibrary/Documentation/GeneralRef/
02_AppKit/Protocols/NXDraggingInfo.rtf

/NextLibrary/Documentation/GeneralRef/
02_AppKit/Protocols/NXDragging-
Source.rtf

A Command Editor Tool for NEXTSTEP

270t 27

